<table>
<thead>
<tr>
<th>PAGE</th>
<th>MARKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
</tr>
</tbody>
</table>

BORDERLINE CHECK

First Name

Last Name

School
Instructions

You may use a calculator to answer any questions in this test.

Work as quickly and as carefully as you can.

You have 45 minutes for this test.

If you cannot do one of the questions, go on to the next one. You can come back to it later, if you have time.

If you finish before the end, go back and check your work.

Follow the instructions for each question carefully.

This shows where you need to put the answer.

If you need to do working out, you can use any space on a page.

Some questions have an answer box like this:

Show your method. You may get a mark.

For these questions you may get a mark for showing your method.
Write in the missing numbers.

\[
37 \times = 111
\]

\[
225 - = 150
\]

\[
 \div 4 = 21
\]

Here are five digit cards.

1 2 3 4 5

Use all five digit cards once to make this sum correct.

\[
 +
\]

6 0
Here is a clock.

How many minutes is it until this clock shows 7:30?

minutes

Here is another clock.

14 : 53

What time will the clock show in 20 minutes?
There are *5 balloons* in a *packet*.

There are *18 packets* in a *box*.

How many balloons are there altogether in a *box*?

There are 5 balloons in a packet.

Kofi needs *65 balloons*.

How many *packets* does he need?
Here is a design and a mirror line.

Which one of the designs below is the reflection of the design in the mirror line?
Tick (✓) the correct design.
Some children collect cans for recycling. Here is a chart of how many cans they collect in the first week.

<table>
<thead>
<tr>
<th></th>
<th>Number of cans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice</td>
<td>12</td>
</tr>
<tr>
<td>Kevin</td>
<td>17</td>
</tr>
<tr>
<td>Tim</td>
<td>11</td>
</tr>
<tr>
<td>Priya</td>
<td>20</td>
</tr>
</tbody>
</table>

How many cans has Kevin collected?

Alice’s **target** is to collect 30 cans.

How many **more** cans does Alice need to reach her target?
7. Hayley makes a sequence of numbers.
Her rule is

‘find half the last number then add 10’

Write in the next two numbers in her sequence.

36 28 24

8. Here is the net of a cube with no top.
The shaded square shows the bottom of the cube.

Draw an extra square to make the net of a cube which does have a top.
These are the prices in a fish and chip shop.

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>£1.95</td>
</tr>
<tr>
<td>Chips</td>
<td></td>
</tr>
<tr>
<td>small bag</td>
<td>55p</td>
</tr>
<tr>
<td>large bag</td>
<td>70p</td>
</tr>
<tr>
<td>Peas</td>
<td>38p</td>
</tr>
</tbody>
</table>

Luke has £3

He wants to buy one fish, peas and two large bags of chips.

How much more money does he need?

Show your method. You may get a mark.
Draw **two straight lines** from point **A** to divide the shaded shape into a square and two triangles.

The temperature **inside** an aeroplane is **20°C**.

The temperature **outside** the aeroplane is **–30°C**.

What is the **difference** between these temperatures?

degrees
Karen makes a fraction using two number cards. She says,

‘My fraction is equivalent to \(\frac{1}{2} \)

One of the number cards is 6’

What could Karen’s fraction be?

Give both possible answers.

Write what the three missing digits could be in this calculation.

\[
\begin{array}{c}
 \times \\
\end{array}
\begin{array}{c}
 \\
\end{array}
= \begin{array}{c}
3 \\
7 \\
8 \\
\end{array}
\]
Here is a diagram for sorting numbers.

Write one number in each white section of the diagram.

<table>
<thead>
<tr>
<th>multiples of 20</th>
<th>less than 1000</th>
<th>1000 or more</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write these lengths in order, starting with the shortest.

\[
\begin{align*}
\frac{1}{2} \text{ m} & \quad 3.5 \text{ cm} \\
25 \text{ mm} & \quad 20 \text{ cm}
\end{align*}
\]
16

In this sequence each number is double the previous number.

Write in the missing numbers.

3 6 12 24 48

17

Here are the start and finish times of some children doing a sponsored walk.

<table>
<thead>
<tr>
<th></th>
<th>Start time</th>
<th>Finish time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Claire</td>
<td>9:30</td>
<td>10:55</td>
</tr>
<tr>
<td>Ruth</td>
<td>9:35</td>
<td>11:05</td>
</tr>
<tr>
<td>Dan</td>
<td>9:40</td>
<td>11:08</td>
</tr>
<tr>
<td>Tim</td>
<td>9:45</td>
<td>11:05</td>
</tr>
</tbody>
</table>

How much longer did Claire take than Tim?

minutes
This fence has three posts, equally spaced.

Each post is 15 centimetres wide.

The length of the fence is 153 centimetres.

Calculate the length of one gap between two posts.

Show your method. You may get a mark.
k, m and n each stand for a whole number.

They add together to make 1500

\[k + m + n = 1500 \]

m is three times as big as n.

k is twice as big as n.

Calculate the numbers k, m and n.
Cheddar cheese costs £7.50 for 1kg.

Marie buys 200 grams of cheddar cheese.

How much does she pay?

Cream cheese costs £3.60 for 1kg.

Robbie buys a pot of cream cheese for 90p.

How many grams of cream cheese does he buy?

Show your method. You may get a mark.
Here is a square spinner.

Look at these statements.

For each one put a tick (✓) if it is correct. Put a cross (✗) if it is not correct.

‘4’ is the most likely score.

‘2’ and ‘4’ are equally likely scores.

Odd and even scores are equally likely.

A score of ‘3’ or more is as likely as a score of less than ‘3’.
23 This diagram shows four regular hexagons.

Shade in one third of the diagram.

24 250 000 people visited a theme park in one year.

15% of the people visited in April and
40% of the people visited in August.

How many people visited the park in the rest of the year?

Show your method. You may get a mark.